
Professor F. Grillot

Problem set 3

EE 270 - Applied Quantum Mechanics

Due Wednesday Nov. 22, 2017 at 8.00 AM

Exercise I (20 points)

A function | f i can be expressed as an expansion of complete orthonormal basis

functions |'ni.
(a) Show that the identity operator

ˆI =
P

n |'ni h'n| acting on the function | f i leaves

it unchanged.

(b) The sum of diagonal elements of an operator

ˆA expressed as a matrix is called a

trace operator, Tr

n

ˆA
o

. Show that the trace operator is independent of the basis used.

(c) A unitary operator satisfies

ˆU�1 = ˆU†. Show that the inner product of functions

| f
1

i and |g
1

i is invariant under unitary transformation such that | f
2

i = ˆU | f
1

i and

|g
2

i = ˆU |g
1

i.
(d) Demonstrate a unitary transformation can be used to change the representation

of an operator from

ˆA to

ˆB = ˆU ˆA ˆU† by showing that the matrix elements satisfy

hg
1

| ˆA| f
1

i = hg
2

| ˆB| f
2

i.

Exercise II (20 points)

Derive the following commutation relations.

[

ˆLz, x̂] = i~ŷ

[

ˆLz, ˆLx] = i~ ˆLy

[

ˆLz, ẑ] = 0

[

ˆLx, ˆL2

] = 0

From these relations, which physical quantities can be measured simultaneously?



Exercise III (10 points)

The non-zero state |n, ti evolves in time according to the Schrödinger equation

i~ @@t |n, ti = ˆH |n, ti where

ˆH is the Hamiltonian. A unitary time-evolution operator

seen in class

ˆU(t, t
0

) evolves the state from time t
0

such that |n, ti = ˆU(t, t
0

) |n, t
0

i.
(a) Considering

ˆH , ˆH(t) show that |n, ti = exp

⇣

�i ˆH(t � t
0

)/~
⌘

|n, t
0

i.
(b) Considering

ˆH = ˆH(t) and [

ˆH(t), ˆH(t0)] = 0, and t , t0 show that |n, ti =
exp

⇣�i
~

R t
t
0

ˆH(t0)dt0
⌘

|n, t
0

i.

Problem : Solving the mystery of the missing neutrinos (50 points)

Electron neutrinos are produced in the Sun as a product of nuclear fusion. Solar

neutrinos constitute by far the largest flux of neutrinos from natural sources obser-

ved on Earth, as compared with e.g. atmospheric neutrinos or the di↵use supernova

neutrino background. Neutrino oscillation is a quantum mechanical phenomenon

Figure 1 – Sunset in Santa Monica, California. Where are the solar missing neutrinos?

whereby a neutrino created with a specific lepton flavor (electron, muon, or tau)

can later be measured to have a di↵erent flavor. In 2015, the Nobel Prize in phy-

sics was awarded for the experimental observation of neutrino oscillations (see

https://physics.aps.org/articles/v8/97) Neutrinos are ubiquitous char-

geless elementary particles which can only be indirectly detected through their

(rare) participation in nuclear decay processes. For many years, neutrinos were

thought to be massless, but the discovery of neutrino oscillations confirmed that

they do indeed have some (very small) finite mass. Although the experiments are

complex, the basic theory of neutrino oscillations is relatively simple and can be

understood using basic quantum mechanical concepts. For our purposes we need

only consider two types of neutrinos, the electron and muon neutrinos ⌫e and ⌫µ



respectively, which are two orthonormal quantum states that comprise the basis of

a 2-D Hilbert space.

Let us work with the basis states |⌫ei =
 

1

0

!

and

�

�

�⌫µ
E

=

 

0

1

!

. The Hamiltonian in this

basis for a neutrino at rest takes the form

H = c2

 

me mx

mx mµ

!

(1)

where c is the speed of light and me, mµ, and mx are real parameters.

(1) Find the energy eigenvalues E
1

and E
2

of the Hamiltonian (1). (Hint : recall

that the eigenvalues � of a matrix M can be found using the determinent equation

det |M � �I| = 0.) If the mass of an energy eigenstate is given by E
1,2 = m

1,2c2

,

what are the masses m
1

and m
2

of the two energy eigenstates?

(2) Find the corresponding energy eigenfunctions |⌫
1

i and |⌫
2

i. Don’t forget to

normalize ! Write your answer in terms of a “mixing angle” ✓ defined such that

cos

✓✓

2

◆

=
mx

p

m2

x + (m
1

� me)
2

sin

✓✓

2

◆

=
m

1

� me
p

m2

x + (m
1

� me)
2

.

(Hint : if you first find |⌫
1

i, you can determine |⌫
2

iwith minimal calculation simply

by requiring the two states to be orthogonal.)

(3) Write

�

�

�⌫µ
E

and |⌫ei in terms of the energy eigenstates |⌫
1

i and |⌫
2

i. Are |⌫ei and

�

�

�⌫µ
E

stationary states?

(4) Suppose an electron neutrino is produced at time t = 0 in state | (t = 0)i = |⌫ei.
What is the probability at a later time t that the state is observed as a muon neutrino,

i.e., what is |
D

⌫µ
�

�

� (t)
E

|2 ? The behavior described by this equation is called neutrino

oscillation ; why do you think it has that name? (Note that in this calculation

D

⌫µ
�

�

�

is not time-dependent, but | (t)i is.)

(5) Neutrinos travel at relativistic speeds such that their momentum p � m⌫c
where m⌫ is the mass of the neutrino. Then the total energy of each stationary state

E
1,2 = pc

s

1 +
m2

1,2c2

p2

⇡ pc +
m2

1,2c3

2p
. Using the result from part d), show that the

probability of neutrino oscillation is proportional to

sin

2

0

B

B

B

B

@

(m2

2
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1

)c3t
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C

C

C
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.



Comments

The result you have derived in this homework shows that 1) di↵erent types of neu-

trinos can transform into each other because the Hamiltonian "mixes" di↵erent

types through the mx term and 2) the rate of transformation is dependent on the

di↵erences in mass, implying that neutrinos are massive, so observation of neu-

trino oscillations is conclusive evidence of their mass. Notice that oscillations do

not reveal the absolute values of m
1

and m
2

; as far as I know, the latter are still

experimentally undetermined (beyond upper bounds which indicate that they must

be extremely small).

Two important sources of neutrinos that pass through Earth are µe generated by

the Sun and particles generated in the upper atmosphere by cosmic rays, which

produce a 2 :1 ratio of ⌫µ :⌫e. The Nobel Prize winning-experiments essentially

measured the ratios of atmospheric (1998 at Kamiokande) and solar (2001 at Sud-

bury) ⌫µ and ⌫e that reach the surface of the Earth, finding them in each case to be

di↵erent from the generation ratios and consistent with neutrino oscillations

1

.

Further readings

(a) The Kamland detector in Japan is a an electron antineutrino detector at the

Kamioka Observatory, an underground neutrino detection facility near Toyama,

Japan.

http://www.awa.tohoku.ac.jp/kamland/

(b) Super-Kamiande is a neutrino observatory located under Mount Ikeno in Japan.

The observatory was designed to detect high-energy neutrinos to search for proton

decay, study solar and atmospheric neutrinos, and keep watch for supernovae in

the Milky Way Galaxy.

http://www-sk.icrr.u-tokyo.ac.jp/sk/index-e.html

1. It has been known for decades that the number of solar electron neutrinos observed on Earth is significantly smaller than

what is expected to reach our planet from the Sun. We now know the reason for this discrepancy is because many of these electron

neutrinos are converted into muon neutrinos in route via neutrino oscillations


